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Abstract 

Using supersymmetry differential forms can be studied by methods of the theory of normal forms 
01 smooth functions. Differential forms on M can be considered as&nctions on a supermanifold 
M and the De Rham differential on-M becomes a vector field on M. This vector field generates 
an action of the supergroup N’I’on M. We prove the equivariant Morse lemma for this action and 
show that it implies both the ordinary Morse lemma and the Darboux theorem on M. 
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0. Introduction 

0. I. Singularities offunctions and differential forms 

Let us consider the basic facts about local behavior of the two types of objects on man- 
ifolds: smooth functions and closed differential forms. The two cases look surprisingly 
similar. 

Let M be a P-manifold with a point P E M, smooth vanishing at P function f, and 
closed differential form 01. 
- If f is non-singular at P (that is, the linear part of its Taylor expansion at P is non-zero), 

then there exists a local coordinate system XI, . . . , x, at P, such that f (xl, . . , x,) = XI 
(Implicit function theorem). 

- If a! is a closed l-form that does not vanish at P, then there exists a local coordinate 
systemxl, . . . . x,, at P in which w = dxl. 
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- If f is singular at P but its second differential fo E S2(r,*J4) (the quadratic part of the 
Taylor expansion) is a non-degenerate quadratic form on Tp M, then there exists a local 
coordinate system in which f coincides with its quadratic part fo (Morse lemma). 

_ If cx is a closed 2-form, such that its restriction to TpM is a non-degenerate skew form 
cm E A2(T,*M), then there exists a local coordinate system in which a has constant 
coefficients and, therefore, coincides with ao = (Y(O) (Darboux theorem). 
The first two theorems do not only look similar, they are essentially equivalent. The first 

theorem is a particular case of the implicit function theorem and the second follows from it 
because any closed 1 -form is (locally) a differential of a function vanishing at P. 

The other two theorems (the Morse lemma and the Darboux theorem), however, do not 
follow from each other. They are considered as starting points of two different branches of 
Geometry: Morse theory and symplectic geometry. 

The aim of this paper is to show that this analogy is not superficial, and that the Darboux 
theorem and the Morse lemma are intimately related. They both are particular cases of a 
more general theorem-the equivariant Morse lemma for supermanifolds which is proved 
here. 

0.2. Supersymmetry and supermanifolds 

The idea of supersymmetry was developed originally by physicists in their attempt to 
construct a theory unifying all known kinds of interactions. Supersymmetry in physics 
means simultaneous consideration of particles with different types of statistics (bosons and 
fermions). Even though the theory of Grand Unification is still far from being completed, 
the supersymmetry approach in physics has already proved to be very useful. 

The branch of mathematics that provides ground for these ideas is called supermanifold 
theory. Many concepts and results of classical geometry, analysis and algebra have been 
successfully generalized for the super case and have been used to justify physical construc- 
tions and statements (cf. [5,10]). The idea of supersymmetry turned out to be fruitful even 
in very traditional parts of mathematics. It has brought new proofs, new results and new 
insights in several classical fields. Examples include the Atiyah-Singer index theorem [7], 
equivariant characteristic classes [ 111, the Alexander knot polynomial [ 151, Morse theory 
[21], and Weyl formula for representations of simple Lie groups [ 11. 

We are not going to discuss these applications in this paper. Our goal here is to emphasize 
the unifying role that supersymmetry plays in mathematics. Roughly speaking, supersym- 
metry in mathematics makes “equal” commuting and anticommuting objects. From this 
point of view, objects which look very different become closely related. Here are a few ex- 
amples: polynomials and skew forms on a vector space; the orthogonal and the symplectic 
groups; differential operators and elements of the Clifford algebra; finite- and infinite- 
dimensional Lie algebras; integration and differentiation; smooth functions and differential 
forms. 

We will elaborate only on the last example and will explain how the Morse lemma and 
the Darboux theorem may be treated as two particular cases of one theorem. 
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0.3. Darboux theorem as Morse lemma. Plan of the proof 

The main idea is very simple. Differential forms on an n-dimensional manifold M can 
be considered as functions on an n]n-dimensional supermanifold &?. That is, C”(G) = 
flh, the algebra of differential forms on M. For example, a 2-form w = c fij (x) ds; A 
tij becomes the function F(x,t) = c fij(x)ttj, where ti is the odd coordinate on fi 
corresponding to tii . 

All results of classical analysis can be generalized to the case of supermanifolds. In par- 
ticular, we can use the super analogs of the implicit function theorem and the Morse lemma 
and find a diffeomorphism of 2 reducing w to its quadratic part q = c fij (0) tii A &j 

This, however, does not prove the Darboux theorem, because we need a diffeomorphism 
coming from M; but not every diffeomorphism of the supermanifold G is induced by a 
diffeomorphism of M. 

To get rid of the extra freedom that exists on 2, we can use an additional structure on 
@-a vector field D = xi ti (a/axi) that corresponds to the De Rham differential in 12;. 
The vector field D is odd, that is, it changes parity. Unlike the case of even vector fields, 
not every odd vector field X on a supermanifold can be integrated. The reason is that for 
odd vector fields the (super)commutator [X, X] = 2X2 is not necessarily zero. For the De 
Rham vector field we have [D, D] = 2D2 = 0, which means that the vector field D can be 
integrated to a flow. This flow gives a canonical action of the supergroup G = Roilon the 
supermanifold 2. 

The condition that the differential form o is closed is equivalent to the invariantness of 
the corresponding function on $ with respect to the De Rham flow. The equivariant Morse 
lemma (which is proved in Section 3) asserts that the form w can be reduced to its quadratic 
part og by a G-equivariant coordinate transformation F (i.e. by a diffeomorphism of G 
which commutes with this flow). Using the description of G-equivariant diffeomorphisms 
given in Section 2, we show that the diffeomorphism P of M, obtained from F by forgetting 
the odd coordinates, takes the differential form o to its quadratic part ~0. 

In the same spirit, the super version of the Darboux theorem [8,17] and the super Morse 
lemma [ 161 follow from the equivariant Morse lemma for the De Rham action on 2, where 
M is now a supermanifold. This approach also allows one to study non-homogeneous 
differential forms, that is forms w = C wi, where wi E Da. Such forms appear in Quillen’s 
approach to the Chem character [ 1 l] and the Atiyah-Jeffrey theory [3]. 

0.4. The structure of the paper 

One of the goals of this paper is to demonstrate usefulness of the supermanifold theory, 
therefore we do not assume familiarity with this field. In Section 1 we present the definitions 
and results which are used later. 

In Section 2 we study the supermanifold 2, the algebra of functions on which is the 
algebra of differential forms D& on a manifold M. This supermanifold was considered 
previously by different authors. Very interesting applications of this construction were found 
by Bernstein-Leites [6] and Witten [21]. The supermanifold $ may be considered as an 
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odd analog of the loop space since $ 2 Map@ ‘It, M), and lR”I1is the only O] l-dimensional 
supergroup-the odd analog of the circle group. And again, the peculiarities of the super 
case make the odd loop space different from its even counterpart in at least one essential 
aspect: the super loop space is finite-dimensional. Even loop spaces are equipped with an 
S’-action. On 2 there is a canonical action of the supergroup l@‘. The generator of this 
action (an odd vector field D) is the De Rham differential in Q&. We describe D-equivariant 
diffeomorphisms of G in Section 2. Then in Section 3, we use this description to prove 
the equivariant Morse lemma for the De Rham action and show that it implies the Darboux 
theorem on M. For odd-dimensional manifold M our theorem gives the first classification 
result on degenerate 2-forms (also due to Darboux). More complicated singularities of 
closed forms considered by Martinet [ 121 and Roussarie [ 141 can also be studied by this 
method. 

1. Preliminaries on supermanifolds 

In this section we summarize definitions and facts from the theory of supermanifolds 
which will be used in the paper. Details can be found in [5,8-101. In what follows we refer 
to original publications only if the corresponding results are not covered in these references. 

1.1. Super-spaces and supermanifolds 

In the supermanifold theory everything is supposed to be &-graded. Grading (orparity) 
of an object a is denoted by ii. Elements of parity 0 are called even and elements of parity 
i are called odd. Even and odd elements are called homogeneous. All standard algebraic 
notions can be generalized to the Hz-graded case by introducing signs in proper places. The 
following main principle helps to have the signs right. 

When something ofparity p moves behind something ofparity q, the sign (- l)P9 appears. 
The (p(q)-dimensional superspace RP14 is a pair ([WP, P(RPl9)), where P(RPl9) = 

C”(lV’) @ A’(R9) is called the superalgebra of functions on RP14. Any function f = 
f(x,t) E P’(UV”~) h as a unique component expansion 

f = f(x3 6) = fO(X) + C f/“(X)ti + C fy’(X)tiCj + . ’ 

i ij 

Supermanifolds are defined as objects obtained by pasting together open pieces of UV’l4. 
A supermanifold M is a topological space M with a sheaf of supercommutative algebras 
F = FM locally isomorphic to (RPl9, Coc(FP19)). In other words, M can be covered by 
open charts U,, such that FvU = C”( U,) @ A*(lR9). We denote the underlying manifold 
M of M by M,.d. 

If a coordinate system (generators of FvU) (.P, 6”) = (x?, . . , x;, cr. . . . ,,$t) is chosen 
on each chart (U,,FV~), then the structure of M can be defined in terms of transition 
functions G@ = (g”fi, yap): 
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satisfying the standard cocycle conditions G@ o Gps = Ga’. 
The free terms gy{(xfi) of the expansion (1) give the transition functions of the underlying 

manifold M = Mrd in the atlas (U,, P). The collection of matrices f @ = (yj;’ (xb)) of 
the linear terms in (2) is a G L (q)-valued 1 -cocycle on M. It defines a q-dimensional vector 
bundle on M, the conormal bundle N = 3m, 113; i of Mrd in M. 

Remark. Let M be a manifold of dimension p and E be a vector bundle on M of rank q. 
Then ME = (M; A*(E)) is a (plq)-dimensional supermanifold with the transition func- 
tions: 

with (ME)rd = M and N = n(E), where l7 is the parity change functor. Such superman- 
ifolds are called split. In the Cm -case all supermanifolds are obtained by this construction 

(see 141). 

1.2. Regular and singular points of functions 

Standard theorems on the local behavior of functions on manifolds remain valid in the 
super case. We will use two of them: the implicit function theorem and the Morse lemma. 

A function f on a supermanifold M is called regular or non-singular at the point m E M 
if at least one partial derivative of f does not vanish at m. The implicit function theorem 
gives the following local description of the homogeneous non-singular functions. 

Proposition. Let f be afunction non-singular at m E M. 
(1) If f = 0, then there exists a local coordinate system (x, t) at m, such that f (x, 6) = 

c+x1. 
(2) rf f = 1, then there exists a focal coordinate system (x, <) at m, such that f (x, 4) = 0. 

1.2.1. Morse points 
If f is singular at m E M, then its second differential (the quadratic part of the Taylor 

expansion) at m is a well-defined (super)symmetric bilinear form on T,M. If f is homo- 
geneous, then the rank rk, f of the second differential of f in m is called the rank of the 
singularity. If f has in m a singularity of a maximal possible rank, m is called a Morse 
singular point of f . Morse singularities have a nice local description. 

Proposition (Morse lemma [ 161). Let f be a homogeneousfunction on a p]q-dimensional 
supermanifold with a Morse singularity at m. 
(1) If f = b, then rk,,, f = a]b = p I2[q/2] and there exists a local coordinate system 

(x,~)atm,suchthatf(x,~)=c+x~+~~~+x~+~~C;:!+.~~+C;~_~~~. 



64 A. Vaintrob/Joumal of Geometry and Physics 18 (1996) 59-75 

(2) Iff = 1, then rk, f = ala, where a = min(p, q), and there exists a local coordinate 
system (x, 6) at m, such that f(x, 6) = xl61 + . . . + x&. 

If f has a singularity of a non-maximal rank, then we can split f locally into a sum of 
two functions: one having a Morse singularity and another with vanishing quadratic part. 

Proposition (Morse lemma with parameters [ 161). If f is homogeneous and singular at 
m with rk, = a(b, then there exists a coordinate system (x1, . . . , x,, ~1, . . . , Y~-~, 61, . . . , 

tb,ql, . ..I Q-b) aroundm in which f(x, y, 6, n) = g(x, 4) + h(y, n), where rk(g) = a]b 
and rk(h) = 010. 

1.3. Vector$elds and dtzerential equations on supermanifolds 

1.3.1. Vectorjelds 
Derivations of the superalgebra of functions of a supermanifold M are called vector$elds 

onM.Inlocalcoordinatesxl, . . . . x,,tl, . . . . & on M every vector field V can be written 
asadifferentialoperator V = cF__, fi(a/axt)+~~=, gj(a/a4j), where fi,gj E COO(M) 
and the odd derivative a/a& is defined by the rule a& /aej = Sij. 

Vector fields on a supermanifold M form a locally free FM-module Vect(M). The 
superspace T,M of its O-jets in m E M is called the tangent space to M at m. 

The space Vect(M) is a Lie superalgebra with respect to Poisson bracket: [V, U] = 
VU - (-l)“UV or, in local coordinates u = (xi,(j), 

Any two non-vanishing vector fields at a given point on a manifold are locally equivalent: 
they can be transformed into each other by a local coordinate change. This is still true for 
even vector fields on super-manifolds, but for odd or non-homogeneous vector fields this 
theorem is no longer valid. The explanation is that a vector field on a supermanifold does 
not always commute with itself. For example, odd vector fields ur = a/at,, v2 = a/&$1 + 

(1 a/axl, ~3 = a/at1 +clxl a/ax1 do not vanish on R ’ ’ ’ , but they are not equivalent to each 
other since [ul, VI] = 0, [VZ, ~21 = 2a/axi, [us, us] = 2xta/axr. There exist, however, 
three local normal forms for non-vanishing homogeneous vector fields on supermanifolds. 

Theorem (Shander [ 171). Let V be a homogeneous vectorjeld on a supermanifold M not 
vanishing at m E M. 
(1) If V is even, then there exists a coordinate system (x, 6) at m, such that V = a/ax]. 
(2) If V is odd and the commutator [V, V] does not vanish at m, then there exists a 

coordinate system (x, 6) at m, such that V = a/a& + t1 a/axl. 
(3) If V is odd and the commutator [V, V] = 0 in a neighborhood of m, then there exists 

a coordinate system (x, 4) at m, such that V = 6’/a41. 



A. Vaintrob/.loumal of Geometry and Physics 18 (1996) 59-75 65 

1.3.2. Distributions and the Frobenius theorem 
An rls-dimensional distribution F on a supermanifold M is a subbundle of Vect(M) 

locally generated by r even and s odd linearly independent vector fields. The distribution 
F is called integrable if for every point m E M there exists a chart U 3 m with coordin- 
ates (x, t), such that F(U) is generated by the vector fields a/axt, . . . , a/ax,, a/at,, . . , 

am,. 

Theorem ([ 181). A distribution F on a super-manifold M is integrable if and only if the 
space of sections of F is closed under commutator of vector-fields. 

Distributions of rank 011 and homological vector fields. In the case of a distribution 
generated by one vector field V the integrability condition is [V, V] = f V, f E P(M). It 
is automatically satisfied for distributions of rank 110, since every even vector field commutes 
with itself. For odd vector fields [V, V] = 2V2, so this condition becomes non-trivial. 

An odd vector field V for which [V, V] = 2V2 = 0 is called homological. Distributions of 
rank 011 spanned by homological vector fields are integrable. And vice versa, any integrable 
01 l-dimensional distribution can be generated locally by a homological vector field. 

1.3.3. Ordinary dtrerential equations on super-manifolds 
The three types of rectifiable vector fields on supermanifolds define three types of ordinary 

differential equations. A solution of the differential equation determined by vector field V 
is a morphism 

F:TxM+M, such that F,(ar) = V (5) 

and nr x F : T x M -+ T x M is a (local) diffeomorphism. Here T (time) is an 
interval in R and aT = a/at if V is even, and T = twoI’, 8, = ala0 if V is odd; 71~ 
denotes the canonical projection onto T. The main difference with the purely even case is 
that not all differential equations with odd time 8 can be solved. For example, the system 
ax/%3 = 6; ae/af!I = 1 has no solutions, since it implies a2x/(W2 = 1, whereas it should 
be 0 because (a/SQ2 = 0. The straightening theorem gives the following versions of the 
classical existence and uniqueness theorem. 

Theorem ([ 171). 
(1) If V is even, then Eq.(5) has a unique solution. 
(2) If V is odd, then (5) has a solution ifand only if V is a homological vector$eld. 

2. Differential forms as functions 

Here we consider an important example of a supermanifold. Differential forms on a 
manifold M become functions on a supermanifold, and the De Rham differential becomes 
a vector field. 
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2.1. Supermanifold G 

Let M be a manifold of dimension n. Consider the algebra sZ& of differential forms 
on M. In a local coordinate system x1, . . . , x,, on M the algebra J2t is isomorphic to the 
algebraP(xt, . . . . x,)@A*(~i, . . . . J$),where& =dri. 

G 
Therefore, elements of L?& become functions on the nln-dimensional supermanifold 
= (Al; 52&), with the transition functions 

Here g@(x) are the transition functions of the manifold M. Functions on 2 are, by def- 
inition, differential forms on M. This allows us to treat differential forms by techniques 
developed for functions. Consider, for example, the function 4 = (1 + ~162 E C”(G). 
It is non-singular at the origin since it has a non-zero linear term cl, and by the (super 
analog of the) implicit function theorem it can be reduced to & = 61 in another coordinate 
system. But this may seem strange, because 4 is just the differential form d\t + x1 dq, 
which cannot be reduced to $JO = dxt , since q50 is closed, and q5 is not. 

The explanation of this “contradiction” is that the first reduction is performed by a coor- 
dinate transformation on $, that does not correspond to a diffeomorphism of M. In other 
words, the group of all diffeomorphisms of I$ is much larger than the subgroup of dif- 
feomorphisms induced by diffeomorphisms of M. Any diffeomorphism g of M induces a 
diffeomorphism g = (g, g*) of k?, where g* is the pull-back map of differential forms on M. 

In a local coordinate system (xi) on M we have the following expression for 6: 

Xi t+ gi,O(X), 

where 4i = dri and the diffeomorphism g of M is given by Xi H gi, u(x). 
Therefore, a diffeomorphism of G is induced by a diffeomorphism of M if and only if 

agi o(x) gi,2=gi,s=gi,4=..*=0 and &,=A. 
aXk 

To be able to distinguish diffeomorphisms of $ induced by diffeomorphisms of M we 
have to restrict the freedom on 2. We can do that using an extra structure that $ possesses. 

2.2. The De Rhamfiow 

Let us recall that the algebra of differential forms on M has one more essential element- 
the De Rham differential d. It is an odd derivation of the &graded algebra G&-the ring of 
functions on $. This means that from the point of view of li?, the De Rham differential is just 
an odd vector field D. It has the following expression in local coordinates (x, 0, ti = dri: 
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From this expression and from formula (4), we immediately get the most important 
property of the De Rham differential-its homologicity. Indeed, 

oZ=~[D,D]=C~i~=O. 
i, j I 

The De Rham vector field D on k is homological, therefore, it can be integrated to an 
odd flow on the supermanifold M. This flow is a canonical action of the super Lie group 
Rol’on 2. Diffeomorphisms of 2 which come up from M commute with this action or, in 
another language, are @I-equivariant. 

Remarks. 
(1) 

(2) 

(3) 

2.3. 

If we have a manifold X with an action of a group G on it, it would be natural to 
consider the algebra of invariant functions. It is isomorphic to the algebra of functions 
on the quotient X/G when the quotient exists. But even when there is no good quotient, 
the algebra of G-invariant functions X still carries important information about the 
geometry of the action. In our case the action is “bad”: all points of the submanifold 
M c fi are invariant under the action of the De Rham flow and there is no good 
quotient G/Roll. On the other hand, R’l’-invariant functions on the supermanifold G 
coincide with closed differential forms on M. This explains why in some situations it 
is more natural to study closed differential forms than arbitrary ones. 
6 as a super loop space: There is another way to construct the supermanifold $, and 
it makes the existence of a natural [W’I’-action on % more transparent. 

A remarkable feature of the geometry of supermanifolds is that the space of maps 
from ll@q to an arbitrary supermanifold has a natural structure of ajnife-dimensional 
supermanifold. In particular, it is easy to see that Mor(lR”I1, M) is isomorphic to the 
supermanifold G. Since [w”ll is the only connected O] l-dimensional supermanifold, 
G can be considered as an odd analog of the space LM = Map(S’, M) of loops in 
M. The group S’ acts on L M by left translations. The analogous action of the super- 
group @‘on Mor(R oil , M) becomes the De Rham action on fi after the identification 
Mor(R?‘, M) = 2. 

The space L M inherits from St a natural action of the infinite-dimensional group 
Diff St. Similarly on G, we obtain a canonical action of the$nire-dimensional super- 
group Diff(R”I’). 
Bernstein and Leites [6] used 2 for their theory of integration of differential forms 
on supermanifolds. Later Witten used it in his supersymmetric interpretation of Morse 
theory [21]. 

Equivuriunt difiomorphisms of @ 

Let us describe the group of diffeomorphisms of % equivariant with respect to the canon- 
ical lRO1’-action on %. 
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On the infinitesimal level we have to find the Lie algebra of equivariant even vector fields 
on G, that is, vector fields commuting with the De Rham vector field D, the generator of 
the action. 

We will show that the Lie superalgebra of all vector fields on G commuting with D 
coincides with the range of the operator 

ado : Y H [D, Y]. (10) 

Lemma 2.3.1. (ad~)~ = 0. 

PruojI Using Jacobi identity and properties of D we have 

(ado)2(Y) = ID, ID, VI = [[D, Dl, Yl - [D, [D, VI= -[D, [D, VI 

and, therefore, 2[D, [D, Y]] = 0. 0 

Proposition 2.3.2. A vectorJield X on I@ is D-equivariant ifand only if 

X = [D, Y] for some Y E Vect(G). 

Proo$ The part if of the proposition is precisely the statement of the previous lemma. 
To prove the only if part we first consider the case where M is a contractible domain 

in IF!“. 
Letxt, . . . , x,, be coordinates on M, and & = dxi the corresponding odd coordinates on 

G. Consider an equivariant vector field X on E and compute the commutator of vector 
fields 

We have 

Therefore, [D, X] = 0 is equivalent to 

bi = (-l)‘i D(ai) and D(bi) = 0. 

Since D2 = 0, the second equation follows from the first one. Therefore, we have only one 
condition bi = (- l)h D(ai) which is equivalent to 

X = [D, Yl, where Y = Cai-“. 
ati 

Now let M be an arbitrary manifold. Choose a covering U of M by contractible open 
subsets Ui , such that for any a = (il , . . . , ik} the intersection U, = n,“=, Ui, is contractible 
(or empty). 
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Let C = C(U, V) be the tech complex for the sheaf V of vector fields on c and the 
covering U. The operator adO acts on V as a differential which commutes with the tech 
differential 6. Thus, C becomes a double complex whose total cohomology is isomorphic 
to the homology of the operator ado in the space Vect$). Since ado has trivial homology 
on any U,, a standard homological argument shows that the homology of ado on Vect( 6) 
is also trivial. Therefore, for X E Ker(ado) we conclude that X E Im(ado). 0 

Corollary 2.3.3. The component of unity of the group of equivariant diffeomorphisms ef 
c consists of diffeomorphisms that have the following form in any local coordinate system 

(x9 c). ti = Cl-Xi 

xi I-+ gi (x. 6), (11) 

where 

gi(‘?t) =gi,otx) + k; $$(x)6k,tk2 + c g~‘qk2k3k4(X)~k,~k2~k3~k4 +. . 
I. 2 kl.k2,k3,k4 

(12) 

are arbitrar?/ even functions for which xi H gi, O(X) is a difleomorphism of M. 

Proof The statement follows from the fact that any even equivariant vector field X on G 
has the following coordinate form: 

x=x 
i ( ai(*,t)$ + D(4)& t 

I I > 

where ai are arbitrary even functions on fi. 0 

3. Equivariant Morse lemma for the De Rham flow 

In this section we will give a proof of the equivariant Morse lemma for the De Rham 
flow. 

Arnold in [2] considered an action of a compact Lie group G on R” with a fixed point at 0. 
He proved that every G-invariant function f E Coo(R”) which has at 0 a non-degenerate 
critical point with critical value 0 can be reduced to its quadratic part by an equivariant 
change of variables. 

This theorem can be generalized for functions with degenerate critical points. Namely, 
if f has at 0 a critical point of rank r (the rank of a critical point is the rank of the second 
differential d*f at this point), then there exists an equivariant diffeomorphism reducing f to a 
function f (xl, . . .,x,) = f*(xl, . . . ,xr)+f(x,+l, . . . , x,), where f2 is a non-degenerate 
quadratic form and the quadratic part of J at 0 vanishes. 

In this section we prove an analog of the equivariant Morse lemma for the action of the 
supergroup II@’ on M generated by the De Rham vector field D. This theorem generalizes 
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both the usual Morse lemma and the Darboux theorem. Since all our considerations are 
local, we put M = R” and, consequently, E = Rnln. 

Theorem 3.1. Let f be a homogeneous (even or odd) function on FInIn = 6 invariant 
with respect to the De Rhamjow. If f vanishes at 0 and has a singular point of the maximal 
possible rank, then it can be reduced to its quadratic part f2 at 0 by a local equivariant 
change of coordinates. 

We begin with considering quadratic parts of D-invariant functions. 

Lemma 3.2. Let f be a D-invariant homogeneous function on $ with a singularity at the 
point p E M. Let dim M = n. Then 

rk,(f) = 012r, where2r in iff=o, 

rkp(f) = rlr, wherer 5 n iff= f. 

Proo$ Consider the quadratic part f2 of f in a local coordinate system (Xi, &), ci = DXi 
around p. Invariant functions on G are closed differential forms on M. Therefore, when f 
is even, f2 cannot depend on Xi, SO f2 = c aijcicj and by a linear transformation of (i we 
can take this skew symmetric bilinear form to the canonical form 

f2 = 6162 + t3’3k + “. + (2r-1t22rv (13) 

where 2r < n. 
In the case when f is odd f2 = xi, j bijxicj, and Of2 = 0 if and only if f2 = Dg for 

g = Ci,i CijXiXj. Diagonalizing the quadratic form g by a linear change of coordinates xi 
we get 

= xl61 f x2t2 f . . f x&. ?? (14) 

To prove Theorem 3.1 we have to consider three cases: 
(i) f is odd; 

(ii) f is even, and n = dim M is even; 
(iii) f is even, and it is odd. 

Let us first show that (iii) follows from (ii). 

Reduction of the part (iii) to (ii). Since the rank of f is maximal, the dimension of 
(Ker f2)i c TiG is equal to 1 at all points. Let V be a non-vanishing odd section of 
Ker f2 considered as a line bundle over M. Then V is a homological vector field, such that 
Vf = 0 and X = [D, VI # 0 at all points. Therefore, the vector fields X and V span a 
regular 111 -dimensional distribution S on G. Let us show mat this distribution is integrable 
and D-invariant. 
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(1) Frobenius condition 

[V,Vl=O and ~V,Xl=[V,[D,~l1=~~~,Dl,~l-~D,~~,Vl1 

= [[V, 01, VI = -[V, [V, Dll = -[V, [D, VII 

from where, by Lemma 2.3.1, [V, [D, V]] = 0. This establishes the integrability of S. 
(2) D-invariantness 

[D,Vl=X and tD,X]=[D,[D,V]]=[[D,D],V1-[D,[D,Vll 

=-[D,[D,V]]=O by2.3.1. 

In addition, Xf = 0, since Vf = Df = 0. Therefore, there exists a local D-equivariant 
submersion p : E -+ 2, such that Ker(p*) = S and f is constant along the fibers of p. 
This means that f pushes down to a function f on N^ which is still D-invariant and has 
maximal rank 2r. 

But dim N = (n - 1 In - 1) = (2r(2r), therefore we can apply the case (ii) of the theorem 
and find a D-equivariant coordinate change on N^ reducing J to 6162 +. . + [zr_ 162~. Now, 
if we augment the new coordinates (x, c) on N^ by equivariant coordinates (y, q) along the 
fibers of p, we obtain an equivariant coordinate transformation on fi taking f to f2. 

Proof of(i) and (ii). After a linear coordinate change, we may assume that f = j’2 + fl, 
where f2 is the quadratic part of f in one of the canonical forms (13) or ( 14) and fl has at 
least order 3 at 0 (i.e. rk(f”) = 010). The rank of f is maximal if r = [n/2] in the case of 
even f, and r = n if f is odd. 

We are going to use the homotopy method of Moser [ 131. Namely, instead of looking for 
a single (local) diffeomorphism g of 2, such that g*(f) = f2, we will consider the family 
of functions 

Ft = fz+tf 

and find a one-parameter family of equivariant diffeomorphisms g,, t E [0, 11, such that 

g:(F,) = fi. (15) 

Differentiating (15) by t, we get 

0 = $Fr(pt(G)) = &(x,0) + Xr(Fr(gr(x,O)). 

where 

(16) 

Since g, is a diffeomorphism, Eq. (16) for fixed t is equivalent to 

X,F,(y,rl) = -~(YJI) (17) 

in a new coordinate system (y, 9) = gt(x,t). 
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If we find a smooth family of even vector fields X, in a neighborhood of (0,O) satisfying 
(17) and the condition Xt (0,O) = 0 for all t E [0, I], then it will give us a required family g, . 
Indeed, the existence theorem for ODE on supermanifolds gives gf only locally on I, but 
the condition XI (0,O) = 0 guarantees that it will extend to the whole segment [0, 11. The 
resulting family will be defined in a smaller neighborhood of the origin than the vector field 
X, but this is all we need. The family of diffeomorphisms will be equivariant with respect 
to the De Rham flow if its generator X, commutes with the De Rham vector field D. 

Existence of such vector field is given by the following lemma. 

Lemma 3.3. In the situation of Theorem 3.1, let h be a germ of a D-invariant function 
on 16 vanishing at 0, such that iI = f and rk(h)= 010. Then there exists (a germ of) an 
equivariant even vectorfield X, such that Xf = h and X(0) = 0. 

Proo$ To finish the proof of Theorem 3.1, we need to consider only the cases (i) and (ii). 
The statement of the lemma in the case (iii) will follow from the theorem. 

Denote by m c C”(lR”ln) the ideal of functions vanishing at the origin. The De Rham 
vector field D is homogeneous of degree 0 with respect tom. This means that D(mk) c mk. 

Since f E m2, h E m3 and Df = Dh = 0, we know from the Poincare lemma that there 
exist U, w E Coo(Rnln), such that 

f = Du, h = Dw, u E m2, w cm3. 

From the description of D-equivariant vector fields in 2.3.2, it follows that the vector field 
X should be of the form X = [D, Y] for some Y E Vectf @“I”). The equation Xf = h can 
now be rewritten as 

[D,Y]f = Dw or DYf = Dw. 

Therefore, it is enough to find an odd vector field 

such that 

Yf = w and Y(0) = 0. 

Now we consider the cases (i) and (ii) separately. 
(i) If f = i, then after a linear change of coordinates on R”ln, we can write 

f = C xiti + f’. where f E m3. 

Therefore, the functions 

af 
Yi=z. 

af 
rli = axi 

(18) 

(19) 

provide a new coordinate system in a neighborhood of the origin. 
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Since w E (m3)I, there exist ai E (m*)o, ai E (m*)i, such that 1~ = Ca,ni + 
c ai vi. Then the vector field 

,=Cai$+,O!i& 
I I 

satisfies Eq. ( 19). 
(ii) If f = b and n is even, then the maximal rank condition implies that 

.f=~l~*+,..+~n-l~n+f. where f E (m3)r). 

so the n odd functions vi = af/&$i are independent at 0 and we can find n even 
functions yi, such that together they give a local coordinate system around 0 E ll@. 
Since w E (m3)I, we can write w as UJ = c aini, and the vector field 

Y=Eai& 
I 

gives a solution to ( 19). 0 

Corollary 3.4. 
(i) LA o be a closed 2-form in R” of maximal rank 2[n/2] at 0. Then it can be reduced 

to a canonical Darboux form 

w() =d_x1 Adx*+...+dQ_l AdQ. (20) 

(ii) Let a = C fi (x) dxi b e a closed 1 -form in R”, such that fi (0) = 0 and the differentials 
dfi (0) are linearly independent. Then cz can be reduced to a canonical form 

a() =xldq +...+x,dx,. (21) 

Proof Theorem 3.1 gives equivariant diffeomorphisms of $ which reduce forms w and (Y 
to (20) and (2 1). These diffeomorphisms have coordinate expressions (1 l), but, since w and 
(Y are homogeneous on ti with respect to Z-grading in Q*(W), the components gi. u(x) of 
(12) give diffeomorphisms of R” which perform the reductions. 

Indeed, let x H g(x, 4) be the transformation go(x) = g(x, 0). Then go is a diffeomor- 
phism of M. If the form w is homogeneous (i.e. w = w2 E 0,&), then LJ = We + . 
and the quadratic part of 6 is determined by go. Therefore, go is a required diffeomorphism 
of M. 0 

Concluding remarks 

(1) 

(2) 

The part (ii) of the corollary is, in fact, equivalent to the standard Morse lemma. 
Indeed, the map f * u = df is a one-to-one correspondence between functions on 
0%” with a non-degenerate singularity at 0 of value 0 and the closed 1 -forms described 
in Corollary 3.4(ii). 
The equivariant Morse lemma gives more than just the Darboux theorem and the 
Morse lemma. It states, in particular, that a closed non-homogeneous differential form 
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w=w1+w3+..., wk E $?, with non-degenerate 01 = c ai (x) dxi, Ui (0) = 0 can 
be taken to the form c fxi dri by a transformation 

X H J&X) + &X) dXi A dxj + . . . ) 

and a closed even form w = 02 + ~4 + . . ., with a non-degenerate 04 can be reduced 
to a Darboux canonical form. 

(3) The original proof of the equivariant Morse lemma given by Arnold [2] cannot be 
generalized to the super case since Arnold used invariant integration, and it does not 
exist for llW’-actions. 

Moreover, as we will show somewhere else, the equivariant Morse lemma is not valid 
for a general R”l’ -action. It is correct, though, for the large class of lRO1’-actions of generic 
type [ 191, and, in particular, it generalizes the Darboux theorem for supermanifolds. 
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